dc.contributor.author | Cortes Zarta, Juan F. | |
dc.contributor.author | Giraldo Tique, Yesica A. | |
dc.contributor.author | Vergara Ramírez, Carlos F. | |
dc.date.accessioned | 2023-08-17T16:28:28Z | |
dc.date.available | 2023-08-17T16:28:28Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14329/586 | |
dc.description.abstract | En el desarrollo de los robots de asistencia un reto importante consiste en mejorar la percepción espacial de los
robots para la identificación de objetos en diversos escenarios. Para ello, es preciso desarrollar herramientas de
análisis y procesamiento de datos de visión estereoscópica artificial. Por esta razón, el presente artículo describe un
algoritmo de redes neuronales convolucionales (CNN) implementado en una Raspberry Pi 3 ubicada en la cabeza de
una réplica del robot humanoide de código abierto InMoov para estimar la posición en X, Y, Z de un objeto dentro de un
entorno controlado. Este artículo explica la construcción de la parte superior del robot InMoov, la aplicación de Trans fer Learning para detectar y segmentar un objeto dentro de un entorno controlado, el desarrollo de la arquitectura
CNN y, por último, la asignación y evaluación de parámetros de entrenamiento. Como resultado, se obtuvo un error
promedio estimado de 27 mm en la coordenada X, 21 mm en la coordenada Y y 4 mm en la coordenada Z. Estos datos
son de gran impacto y necesarios al momento de usar esas coordenadas en un brazo robótico para que alcance el
objeto y lo agarre, tema que queda pendiente para un futuro trabajo. | spa |
dc.description.abstract | In the development of assistive robots, a major challenge is to improve the spatial perception of robots for object
identification in various scenarios. For this purpose, it is necessary to develop tools for analysis and processing of
artificial stereo vision data. For this reason, this paper describes a convolutional neural network (CNN) algorithm
implemented on a Raspberry Pi 3, placed on the head of a replica of the open-source humanoid robot InMoov, to
estimate the X, Y, Z position of an object within a controlled environment. This paper explains the construction of the
InMoov robot head, the application of Transfer Learning to detect and segment an object within a controlled environ ment, the development of the CNN architecture, and, finally, the assignment and evaluation of training parameters.
As a result, an estimated average error of 27 mm in the X coordinate, 21 mm in the Y coordinate, and 4 mm in the Z
coordinate was obtained; data of great impact and necessary when using these coordinates in a robotic arm to reach
and grab the object, a topic that remains pending for future work | eng |
dc.format.extent | 17 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Escuela Tecnológica Instituto Técnico Central | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Red neuronal convolucional para la percepción espacial del robot InMoov a través de visión estereoscópica como tecnología de asistencia | spa |
dc.type | Artículo de revista | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.eissn | 1390-6542 | spa |
dc.identifier.instname | Escuela Tecnológica Instituto Técnico Central | spa |
dc.publisher.place | Bogotá | spa |
dc.relation.citationendpage | 104 | spa |
dc.relation.citationissue | 4 | spa |
dc.relation.citationstartpage | 88 | spa |
dc.relation.citationvolume | 12 | spa |
dc.relation.ispartofjournal | Enfoque UTE | spa |
dc.relation.references | Chansong, D., y Supratid, S. (2021). Impacts of kernel size on different resized images in object recogni tion based on convolutional neural network. 9th International Electrical Engineering Congress
(iEECON): 448-451. https://doi.org/10.1109/ieecon51072.2021.9440284 | spa |
dc.relation.references | Demby’s, J., et al., (2019). Object detection and pose estimation using CNN in embedded hardware for
assistive technology. IEEE Symposium Series on Computational Intelligence (SSCI). https://doi.
org/10.1109/ssci44817.2019.9002767 | spa |
dc.relation.references | Enucă, R. (2019) Dual-input CNN with Keras. https://medium.datadriveninvestor.com/dual-input-cnn with-keras-1e6d458cd979 | spa |
dc.relation.references | Geron, A. (2019b). Hands-on machine learning with scikit-learn, keras, and TensorFlow: Concepts, tools,
and techniques to build intelligent systems. O’Reilly Media. | spa |
dc.relation.references | Ghosh A., et al., (2020) Fundamental Concepts of Convolutional Neural Network. En Balas V., Kumar R., Sri vastava R. (eds) Recent Trends and Advances in Artificial Intelligence and Internet of Things. In telligent Systems Reference Library. Springer. https://doi.org/10.1007/978-3-030-32 | spa |
dc.relation.references | González, J., et al., (2008). La Silla RobÓTica SENA. Un enfoque basado en la interacción hombre-máquina.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2): 38-47. https://doi.
org/10.1016/s1697-7912(08)70143-2 | spa |
dc.relation.references | Hassan, H. F.; Abou-Loukh, S. J., y Ibraheem, I. K. (2020). Teleoperated robotic arm movement using elec tromyography signal with wearable Myo armband. Journal of King Saud University-Engineering
Sciences, 32(6): 378-387. https://doi.org/10.1016/j.jksues.2019.05.001 | spa |
dc.relation.references | Huang, B., et al., (2020). Improving head pose estimation using two-stage ensembles with top-k re gression. Image and Vision Computing, 93(103827): 103827. https://doi.org/10.1016/j.ima vis.2019.11.005 | spa |
dc.relation.references | Jardón, A., et al., (2008). Asibot: Robot portátil de asistencia a discapacitados. Concepto, arquitectura
de control y evaluación clínica. Revista Iberoamericana de Automática e Informática Industrial
RIAI, 5(2): 48-59. https://doi.org/10.1016/s1697-7912(08)70144-4 | spa |
dc.relation.references | Kerstens, H., et al. (2020). Stumbling, struggling, and shame due to spasticity: a qualitative study of adult
persons with hereditary spastic paraplegia. Disability and Rehabilitation, 42(26): 3744-3751.
https://doi.org/10.1080/09638288.2019.1610084 | spa |
dc.relation.references | Khirirat, S., Feyzmahdavian, H. R., & Johansson, M. (2017). Mini-batch gradient descent: Faster convergen ce under data sparsity. IEEE 56th Annual Conference on Decision and Control (CDC). https://doi.
org/10.1109/cdc.2017.8264077 \ | spa |
dc.relation.references | Langevin, G. (2012). InMoov -open-source 3D printed life-size robot. https://inmoov.fr | spa |
dc.relation.references | Lee S., y Saitoh T. (2018) Head Pose Estimation Using Convolutional Neural Network. En Kim K., Kim H.,
Baek N. (eds) IT Convergence and Security 2017. Lecture Notes in Electrical Engineering. Sprin ger. https://doi.org/10.1007/978-981-10-6451-7_20 | spa |
dc.relation.references | Leitner, J., et al., (2013). Artificial neural networks for spatial perception: Towards visual object localisa tion in humanoid robots. The 2013 International Joint Conference on Neural Networks (IJCNN).
https://doi.org/10.1109/ijcnn.2013.6706819 | spa |
dc.relation.references | Li, J., et al., (2021). An integrated approach for robotic Sit-To-Stand assistance: Control framework design
and human intention recognition. Control Engineering Practice, 107(104680): 104680. https://
doi.org/10.1016/j.conengprac.2020.104680 | spa |
dc.relation.references | Lillicrap, T. P., et al., (2020). Backpropagation and the brain. Nature Reviews. Neuroscience, 21(6): 335-
346. https://doi.org/10.1038/s41583-020-0277-3 | spa |
dc.relation.references | Ministerio de Salud y Protección Social de Colombia. (2019). Sala situacional de las personas con dis capacidad. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala situacional-discapacidad2019-2-vf.pdf | spa |
dc.relation.references | Miseikis, J., et al., (2018). Robot localisation and 3D position estimation using a free-moving camera and
cascaded convolutional neural networks. IEEE/ASME International Conference on Advanced In telligent Mechatronics (AIM). https://doi.org/10.1109/aim.2018.8452 | spa |
dc.relation.references | O’Mahony N. et al. (2020) Deep Learning vs. Traditional Computer Vision. En Arai K., Kapoor S. (eds) Advan ces in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing. Springer.
https://doi.org/10.1007/978-3-030-17795-9_10 | spa |
dc.relation.references | Poernomo, A., y Kang, D.-K. (2018). Biased Dropout and Crossmap Dropout: Learning towards effective
Dropout regularization in convolutional neural network. Neural Networks: The Official Journal of the International Neural Network Society, 104: 60-67. https://doi.org/10.1016/j.neu net.2018.03.016 | spa |
dc.relation.references | Pramod, R. T., Katti, H., & Arun, S. P. (2018). Human peripheral blur is optimal for object recognition. http://
arxiv.org/abs/1807.08476 | spa |
dc.relation.references | Qi, J., et al., (2020). On mean absolute error for deep neural network based vector-to-vector regression.
IEEE Signal Processing Letters, 27: 1485-1489. https://doi.org/10.1109/lsp.2020.3016837 | spa |
dc.relation.references | Qin, Z., et al., (2018). How convolutional neural networks see the world. A survey of convolutional neu ral network visualization methods. Mathematical Foundations of Computing, 1(2): 149-180.
https://doi.org/10.3934/mfc.2018008 | spa |
dc.relation.references | Redmon, J., y Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767 | spa |
dc.relation.references | Smola, A., y Vishwanathan, S. (2008). Introduction to Machine Learning. https://alex.smola.org/drafts/
thebook.pdf | spa |
dc.relation.references | Tzutalin. (2015). LabelImg Free Software: MIT License. https://github.com/tzutalin/labelImg | spa |
dc.relation.references | Valencia, N. O., et al., (2016). Movement detection for object tracking applied to the InMoov robot head. XXI
Symposium on Signal Processing, Images and Artificial Vision (STSIVA). https://doi.org/10.1109/
stsiva.2016.7743328 | spa |
dc.relation.references | Wozniak P., et al., (2018) Scene Recognition for Indoor Localization of Mobile Robots Using Deep CNN. En
Chmielewski L., et al., (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Com puter Science. Springer. https://doi.org/10.1007/978-3-030-00692-1_1 | spa |
dc.relation.references | Xu, Y., y Wang, Z. (2021). Visual sensing technologies in robotic welding: Recent research developments
and future interests. Sensors and Actuators. A, Physical, 320(112551), 112551. https://doi.
org/10.1016/j.sna.2021.112551 | spa |
dc.relation.references | Zhang, Z.; Song, Y., y Qi, H. (2017). Age progression/regression by conditional adversarial autoencoder.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/
cvpr.2017.463 | spa |
dc.subject.proposal | Robótica humanoide | spa |
dc.subject.proposal | Redes neuronales convolucionales | spa |
dc.subject.proposal | Percepción espacial | spa |
dc.subject.proposal | Aprendizaje de transferencia | spa |
dc.title.translated | Convolutional Neural Network for Spatial Perception of InMoov Robot Through Stereoscopic Vision as an Assistive Technology | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |