dc.contributor.author | Vergara-Ramirez, Carlos | |
dc.contributor.author | Castañeda-Arias, Nelson | |
dc.contributor.author | Méndez-Carvajal, Nicolás | |
dc.contributor.author | Castiblanco-Ávila, David | |
dc.date.accessioned | 2023-08-17T13:28:39Z | |
dc.date.available | 2023-08-17T13:28:39Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 2390-0504 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.14329/578 | |
dc.description.abstract | Durante la última década la robótica móvil ha tenido grandes
avances en el desarrollo de equipos, permitiendo realizar labores
riesgosas para el ser humano, debido a que sus características
brindan la posibilidad de explorar lugares desconocidos. En
este artículo se analiza el consumo energético de la plataforma
comparando dos estrategias de control: posición y velocidad.
La plataforma se expuso a una trayectoria polinómica de quinto
orden, en la que ambos casos debían recorrerla y demostrar, a
partir de índices de desempeño, su respectiva robustez frente a
perturbaciones en las ruedas del dispositivo, así como las modifi caciones porcentuales de sus características. Mediante la teoría
de la potencia media, al finalizar el recorrido se verificó cuál de
los dos casos de control era el más eficiente energéticamente. | spa |
dc.description.abstract | Mobile robotics during the last decade has made progress in
the development of equipment that manages to perform risky
tasks for humans, because its characteristics provide the pos sibility of exploring unknown places. In order to analyze the
energy consumption of the platform, two control strategies were
compared, both for position and speed control. The analysis
methodology proposes that the platform was exposed to a fifth order polynomial trajectory, in which both cases had to travel it
and demonstrate, based on performance indices, its respective
robustness against disturbances in the wheels of the device, as
well as that of modifications. percentage to the characteristics
of the platform, at the end of the tour by means of the average
power theory it was verified which of the two control cases is
the most energy efficient. | eng |
dc.format.extent | 19 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Libre | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Análisis energético de una plataforma robótica móvil de tipo diferencial | spa |
dc.type | Artículo de revista | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.instname | Escuela Tecnológica Instituto Técnico Central | spa |
dc.relation.citationendpage | 57 | spa |
dc.relation.citationissue | 32 | spa |
dc.relation.citationstartpage | 39 | spa |
dc.relation.ispartofjournal | INGENIARE | spa |
dc.relation.references | H.C. Lamraoui, Z. Qidan y A. Benrabah, “Dynamic velocity tracking control of differential-drive mobile
robot based on LADRC”. 2017 IEEE Int. Conf. Real-Time Comput. Robot. RCAR 2017, pp. 633-638,
doi: 10.1109/RCAR.2017.8311934, 2018. | spa |
dc.relation.references | H. Sira-Ramírez, A. Luviano-Juárez y J. Cortés-Romero, “Control lineal robusto de sistemas no
lineales diferencialmente planos”. Rev. Iberoam. Automática e Informática Ind. RIAI, 8 (1), pp. 14-
28, doi: 10.1016/s1697-7912(11)70004-8, 2011. | spa |
dc.relation.references | Z. Gao, “Active disturbance rejection control: A paradigm shift in feedback control system design”.
Proc. Am. Control Conf., pp. 2399-2405, doi: 10.1109/acc.2006.1656579, 2006. | spa |
dc.relation.references | C. Moler, “Matlab” MathWorks, 2018. | spa |
dc.relation.references | D. Hart, Electrónica de potencia. Madrid: Pearson Education, 2001. | spa |
dc.relation.references | C. Wilhelm, M. Allan y H. Robins, Análisis de circuitos, vol. 1, s.f. | spa |
dc.relation.references | A. Rodríguez Mariano, G. Reynoso Meza, D.E. Páramo Calderón, E. Chávez Conde, M.A. García
Alvarado y J. Carrillo Ahumada. (2015). “Análisis del desempeño de controladores lineales sin tonizados en diferentes estados estacionarios del biorreactor de Cholette mediante técnicas de
decisión multi-criterio”. Rev. Mex. Ing. Química, 1 (0), pp. 167-204, [Online]. Disponible en: http://
www.redalyc.org/articulo.oa?id=62029966013. | spa |
dc.relation.references | K. Kozłowski,. Robot Motion and Control, vol. 335. London: Springer London, 2006. | spa |
dc.relation.references | C. Vergara-Ramírez, N. Castañeda-Arias y D. Castiblanco-Ávila, “Planeación y seguimiento robusto
de trayectorias polinomiales para una plataforma móvil”, 2018. | spa |
dc.relation.references | R.D. Ahmad Abu Hatab, “Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and
Newton-Euler Methodologies: A Unified Framework”. Adv. Robot. Autom., 02 (02), doi: 10.4172/2168-
9695.1000107, 2013. | spa |
dc.relation.references | E.H.J.H. Sørensen, Linear Systems Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. | spa |
dc.relation.references | M. Sebastián y A. Alvarado, “Modelo matemático de un motor de corriente continua separadamente
excitado: control de velocidad por corriente de armadura”. Inst. Ciencias Físicas, Esc. Super. Poli técnica del Litoral, 6 (1), pp. 154-161, 2012. | spa |
dc.relation.references | J. Velagic, B. Lacevic y N. Osmic, “Nonlinear Motion Control of Mobile Robot Dynamic Model”. Mo tion Plan, doi: 10.5772/5997, 2008 | spa |
dc.relation.references | A. Isidori, Nonlinear Control Systems. London: Springer London, 1995. | spa |
dc.relation.references | A. Luviano-Juárez, J. Cortés-Romero y H. Sira-Ramírez, “Robust discrete Generalized Proportional
Integral Control: Application in mechanical systems”. Eur. Control Conf. ECC 2009, pp. 3893-3898,
doi: 10.23919/ecc.2009.7075007, 2014. | spa |
dc.relation.references | P. Jiménez, “Concepts and implementation of PID controllers in a smelting furnace steel”, 506, 2014. | spa |
dc.relation.references | L.F. Lozano-Valencia, L.F. Rodríguez-García y D. Giraldo-Buitrago, “Diseño, implementa-ción y validación
de un controlador PID autosintonizado”. TecnoLógicas, 28, p. 33, doi: 10.22430/22565337.12, 2012. | spa |
dc.relation.references | H.K. Manjunatha Reddy, J. Immanuel, C.S. Parvathi, P. Bhaskar y L.S. Sudheer, “Implementation of
PID controller in MATLAB for real time DC motor speed control system”. Sensors and Transducers,
126 (3), pp. 110-118, 2011. | spa |
dc.relation.references | Q. Zheng (2009). “On Active Disturbance Rejection Control: Stability Analysis and Applications in
Disturbance Decoupling Control”. Dissertation, pp. 1-102, [Online]. Disponible en: http://engaged scholarship.csuohio.edu/etdarchive/324/%0Apapers2://publication/uuid/59393457-288A-4839-8DF1-
ECE06E975C36. | spa |
dc.relation.references | X. Li, S. Wang, X. Wang y T. Shi, “Permanent magnet brushless motor control based on ADRC”.
MATEC Web Conf., vol. 40, doi: 10.1051/matecconf/20164008003, 2016. | spa |
dc.relation.references | R. Song, Y. Li, J. Ruan y J. Huang, “Study on ADRC-based mobile robot lateral control”. 2007
IEEE Int. Conf. Robot. Biomimetics, ROBIO, pp. 1190-1193, doi: 10.1109/ROBIO.2007.4522333, 2007. | spa |
dc.relation.references | D. Casas, “Implementación de un control por rechazo activo de perturbaciones (ADRC) en un ve hículo de transporte Segway”. Universidad Distrital Francisco José de Caldas, 18AD, s.f. | spa |
dc.relation.references | M. Estrada, “Control de velocidad de un motor serie de CD mediante rechazo activo de perturba ciones”. Universidad Central Marta Abreu de las Villas, 2018 | spa |
dc.relation.references | B.-Z. Guo y Z.-L. Zhao, “Active disturbance rejection control: Theoretical perspectives”. Commun.
Inf. Syst., 15 (3), pp. 361-421, doi: 10.4310/cis.2015.v15.n3.a3, 2015. | spa |
dc.relation.references | J. Han, “From PID to Active Disturbance Rejection Control”. IEEE Trans. Ind. Electron., 56 (3), pp.
900-906, doi: 10.1109/TIE.2008.2011621, 2009. | spa |
dc.relation.references | H.E. Espitia y J.I. Sofrony, “Path planning of mobile robots using potential fields and swarms of
Brownian particles”. 2011 IEEE Congr. Evol. Comput. CEC 2011, vol. 22, pp. 123-129, doi: 10.1109/
CEC.2011.5949608, 2011. | spa |
dc.relation.references | J.-H. Urrea-Quintero, N. Muñoz-Galeano y J.M. López-Lezama, “Robust Control of Shunt Active
Power Filters: A Dynamical Model-Based Approach with Verified Controllability”. Energies, 13 (23),
p. 6253, doi: 10.3390/en13236253, 2020. | spa |
dc.relation.references | Z. Gao, “Scaling and Bandwidth-Parameterization based Controller Tuning”. Proc. Am. Control Conf.,
vol. 6, pp. 4989-4996, doi: 10.1109/acc.2003.1242516, 2003. | spa |
dc.subject.proposal | Plataforma móvil | |
dc.subject.proposal | Control por rechazo activo de perturbaciones | |
dc.subject.proposal | Sistemas no lineales | |
dc.subject.proposal | Control GPI | |
dc.subject.proposal | Seguimiento de trayectoria | |
dc.title.translated | Energy analysis of a mobile robotic platform of a differential type | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |