Mostrar el registro sencillo del ítem

dc.contributor.authorVergara-Ramirez, Carlos
dc.contributor.authorCastañeda-Arias, Nelson
dc.contributor.authorMéndez-Carvajal, Nicolás
dc.contributor.authorCastiblanco-Ávila, David
dc.date.accessioned2023-08-17T13:28:39Z
dc.date.available2023-08-17T13:28:39Z
dc.date.issued2022
dc.identifier.issn2390-0504spa
dc.identifier.urihttps://hdl.handle.net/20.500.14329/578
dc.description.abstractDurante la última década la robótica móvil ha tenido grandes avances en el desarrollo de equipos, permitiendo realizar labores riesgosas para el ser humano, debido a que sus características brindan la posibilidad de explorar lugares desconocidos. En este artículo se analiza el consumo energético de la plataforma comparando dos estrategias de control: posición y velocidad. La plataforma se expuso a una trayectoria polinómica de quinto orden, en la que ambos casos debían recorrerla y demostrar, a partir de índices de desempeño, su respectiva robustez frente a perturbaciones en las ruedas del dispositivo, así como las modifi caciones porcentuales de sus características. Mediante la teoría de la potencia media, al finalizar el recorrido se verificó cuál de los dos casos de control era el más eficiente energéticamente.spa
dc.description.abstractMobile robotics during the last decade has made progress in the development of equipment that manages to perform risky tasks for humans, because its characteristics provide the pos sibility of exploring unknown places. In order to analyze the energy consumption of the platform, two control strategies were compared, both for position and speed control. The analysis methodology proposes that the platform was exposed to a fifth order polynomial trajectory, in which both cases had to travel it and demonstrate, based on performance indices, its respective robustness against disturbances in the wheels of the device, as well as that of modifications. percentage to the characteristics of the platform, at the end of the tour by means of the average power theory it was verified which of the two control cases is the most energy efficient.eng
dc.format.extent19 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Librespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleAnálisis energético de una plataforma robótica móvil de tipo diferencialspa
dc.typeArtículo de revistaspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.instnameEscuela Tecnológica Instituto Técnico Centralspa
dc.relation.citationendpage57spa
dc.relation.citationissue32spa
dc.relation.citationstartpage39spa
dc.relation.ispartofjournalINGENIAREspa
dc.relation.referencesH.C. Lamraoui, Z. Qidan y A. Benrabah, “Dynamic velocity tracking control of differential-drive mobile robot based on LADRC”. 2017 IEEE Int. Conf. Real-Time Comput. Robot. RCAR 2017, pp. 633-638, doi: 10.1109/RCAR.2017.8311934, 2018.spa
dc.relation.referencesH. Sira-Ramírez, A. Luviano-Juárez y J. Cortés-Romero, “Control lineal robusto de sistemas no lineales diferencialmente planos”. Rev. Iberoam. Automática e Informática Ind. RIAI, 8 (1), pp. 14- 28, doi: 10.1016/s1697-7912(11)70004-8, 2011.spa
dc.relation.referencesZ. Gao, “Active disturbance rejection control: A paradigm shift in feedback control system design”. Proc. Am. Control Conf., pp. 2399-2405, doi: 10.1109/acc.2006.1656579, 2006.spa
dc.relation.referencesC. Moler, “Matlab” MathWorks, 2018.spa
dc.relation.referencesD. Hart, Electrónica de potencia. Madrid: Pearson Education, 2001.spa
dc.relation.referencesC. Wilhelm, M. Allan y H. Robins, Análisis de circuitos, vol. 1, s.f.spa
dc.relation.referencesA. Rodríguez Mariano, G. Reynoso Meza, D.E. Páramo Calderón, E. Chávez Conde, M.A. García Alvarado y J. Carrillo Ahumada. (2015). “Análisis del desempeño de controladores lineales sin tonizados en diferentes estados estacionarios del biorreactor de Cholette mediante técnicas de decisión multi-criterio”. Rev. Mex. Ing. Química, 1 (0), pp. 167-204, [Online]. Disponible en: http:// www.redalyc.org/articulo.oa?id=62029966013.spa
dc.relation.referencesK. Kozłowski,. Robot Motion and Control, vol. 335. London: Springer London, 2006.spa
dc.relation.referencesC. Vergara-Ramírez, N. Castañeda-Arias y D. Castiblanco-Ávila, “Planeación y seguimiento robusto de trayectorias polinomiales para una plataforma móvil”, 2018.spa
dc.relation.referencesR.D. Ahmad Abu Hatab, “Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and Newton-Euler Methodologies: A Unified Framework”. Adv. Robot. Autom., 02 (02), doi: 10.4172/2168- 9695.1000107, 2013.spa
dc.relation.referencesE.H.J.H. Sørensen, Linear Systems Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.spa
dc.relation.referencesM. Sebastián y A. Alvarado, “Modelo matemático de un motor de corriente continua separadamente excitado: control de velocidad por corriente de armadura”. Inst. Ciencias Físicas, Esc. Super. Poli técnica del Litoral, 6 (1), pp. 154-161, 2012.spa
dc.relation.referencesJ. Velagic, B. Lacevic y N. Osmic, “Nonlinear Motion Control of Mobile Robot Dynamic Model”. Mo tion Plan, doi: 10.5772/5997, 2008spa
dc.relation.referencesA. Isidori, Nonlinear Control Systems. London: Springer London, 1995.spa
dc.relation.referencesA. Luviano-Juárez, J. Cortés-Romero y H. Sira-Ramírez, “Robust discrete Generalized Proportional Integral Control: Application in mechanical systems”. Eur. Control Conf. ECC 2009, pp. 3893-3898, doi: 10.23919/ecc.2009.7075007, 2014.spa
dc.relation.referencesP. Jiménez, “Concepts and implementation of PID controllers in a smelting furnace steel”, 506, 2014.spa
dc.relation.referencesL.F. Lozano-Valencia, L.F. Rodríguez-García y D. Giraldo-Buitrago, “Diseño, implementa-ción y validación de un controlador PID autosintonizado”. TecnoLógicas, 28, p. 33, doi: 10.22430/22565337.12, 2012.spa
dc.relation.referencesH.K. Manjunatha Reddy, J. Immanuel, C.S. Parvathi, P. Bhaskar y L.S. Sudheer, “Implementation of PID controller in MATLAB for real time DC motor speed control system”. Sensors and Transducers, 126 (3), pp. 110-118, 2011.spa
dc.relation.referencesQ. Zheng (2009). “On Active Disturbance Rejection Control: Stability Analysis and Applications in Disturbance Decoupling Control”. Dissertation, pp. 1-102, [Online]. Disponible en: http://engaged scholarship.csuohio.edu/etdarchive/324/%0Apapers2://publication/uuid/59393457-288A-4839-8DF1- ECE06E975C36.spa
dc.relation.referencesX. Li, S. Wang, X. Wang y T. Shi, “Permanent magnet brushless motor control based on ADRC”. MATEC Web Conf., vol. 40, doi: 10.1051/matecconf/20164008003, 2016.spa
dc.relation.referencesR. Song, Y. Li, J. Ruan y J. Huang, “Study on ADRC-based mobile robot lateral control”. 2007 IEEE Int. Conf. Robot. Biomimetics, ROBIO, pp. 1190-1193, doi: 10.1109/ROBIO.2007.4522333, 2007.spa
dc.relation.referencesD. Casas, “Implementación de un control por rechazo activo de perturbaciones (ADRC) en un ve hículo de transporte Segway”. Universidad Distrital Francisco José de Caldas, 18AD, s.f.spa
dc.relation.referencesM. Estrada, “Control de velocidad de un motor serie de CD mediante rechazo activo de perturba ciones”. Universidad Central Marta Abreu de las Villas, 2018spa
dc.relation.referencesB.-Z. Guo y Z.-L. Zhao, “Active disturbance rejection control: Theoretical perspectives”. Commun. Inf. Syst., 15 (3), pp. 361-421, doi: 10.4310/cis.2015.v15.n3.a3, 2015.spa
dc.relation.referencesJ. Han, “From PID to Active Disturbance Rejection Control”. IEEE Trans. Ind. Electron., 56 (3), pp. 900-906, doi: 10.1109/TIE.2008.2011621, 2009.spa
dc.relation.referencesH.E. Espitia y J.I. Sofrony, “Path planning of mobile robots using potential fields and swarms of Brownian particles”. 2011 IEEE Congr. Evol. Comput. CEC 2011, vol. 22, pp. 123-129, doi: 10.1109/ CEC.2011.5949608, 2011.spa
dc.relation.referencesJ.-H. Urrea-Quintero, N. Muñoz-Galeano y J.M. López-Lezama, “Robust Control of Shunt Active Power Filters: A Dynamical Model-Based Approach with Verified Controllability”. Energies, 13 (23), p. 6253, doi: 10.3390/en13236253, 2020.spa
dc.relation.referencesZ. Gao, “Scaling and Bandwidth-Parameterization based Controller Tuning”. Proc. Am. Control Conf., vol. 6, pp. 4989-4996, doi: 10.1109/acc.2003.1242516, 2003.spa
dc.subject.proposalPlataforma móvil
dc.subject.proposalControl por rechazo activo de perturbaciones
dc.subject.proposalSistemas no lineales
dc.subject.proposalControl GPI
dc.subject.proposalSeguimiento de trayectoria
dc.title.translatedEnergy analysis of a mobile robotic platform of a differential type
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc/4.0/